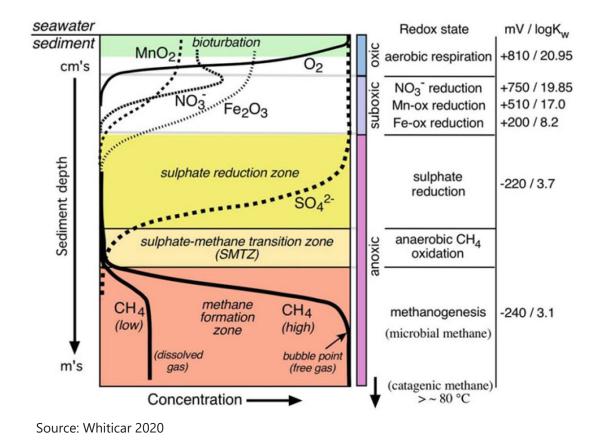
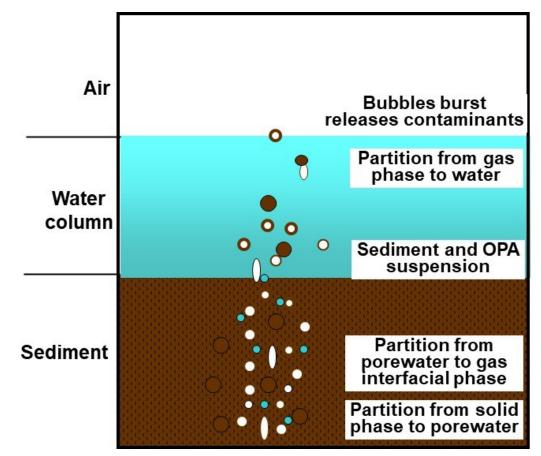
BATTELLE 2023 SEDIMENTS CONFERENCE


The Duration of Ebullition Processes in NAPL-Contaminated Sediments and Implications for Remedy Design

Presented by: Dimitri Vlassopoulos, PhD, Anchor QEA


What is Ebullition?

- Production of gas (mainly methane and carbon dioxide = biogas) as a result of microbial decomposition of organic matter
 - Methanogenesis is ultimate terminal electron-accepting process in biogeochemical redox ladder
- Bubbles form when gas solubility is exceeded in porewater
- Sediment fracture and upward bubble migration when buoyancy forces exceed tensile strength

Ebullition-Facilitated Contaminant Transport

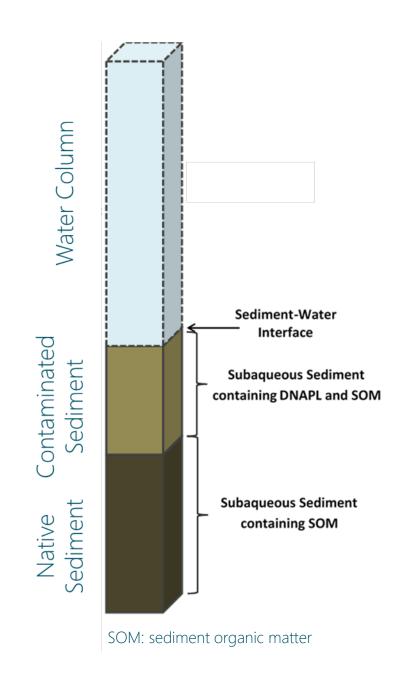
- Pathway common to many NAPL-contaminated sediment sites
- NAPL migration as film on rising bubbles
- VOC partitioning into and transport by gas phase
- Resuspension of contaminated particles by stream of rising gas bubbles

Source: Viana and Rockne 2021

What Controls Ebullition?

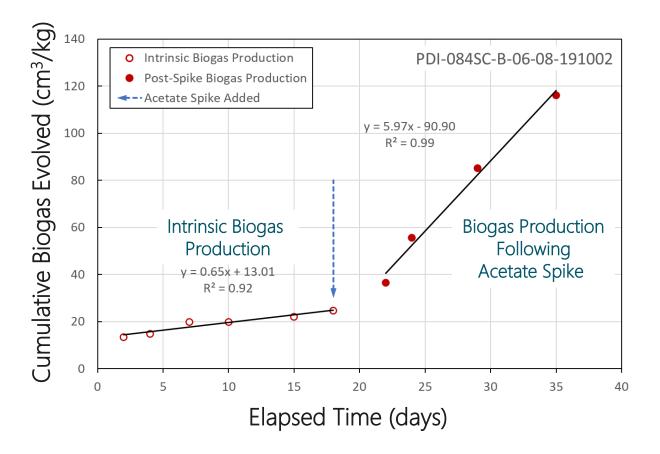
- Rate of biogas production and persistence
 - Microbial activity (methanogens, methanotrophs)
 - Availability of biodegradable carbon (hydrocarbons, natural organic matter, sewage)
 - Geochemical conditions (abiotic oxidation of methane)

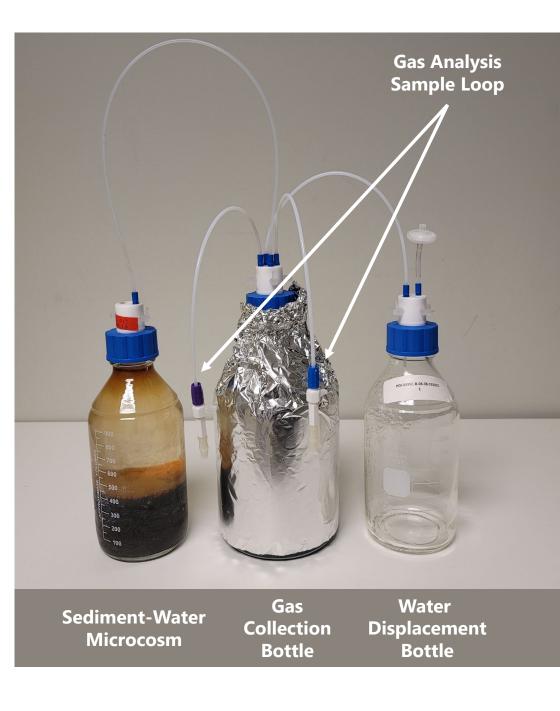
- Rate of gas bubble formation and migration
 - Solubility depends on temperature, pressure (depth, tidal), and salinity
 - Sediment physical characteristics
- If sediment labile carbon source is finite, then the duration of ebullition will be **finite**

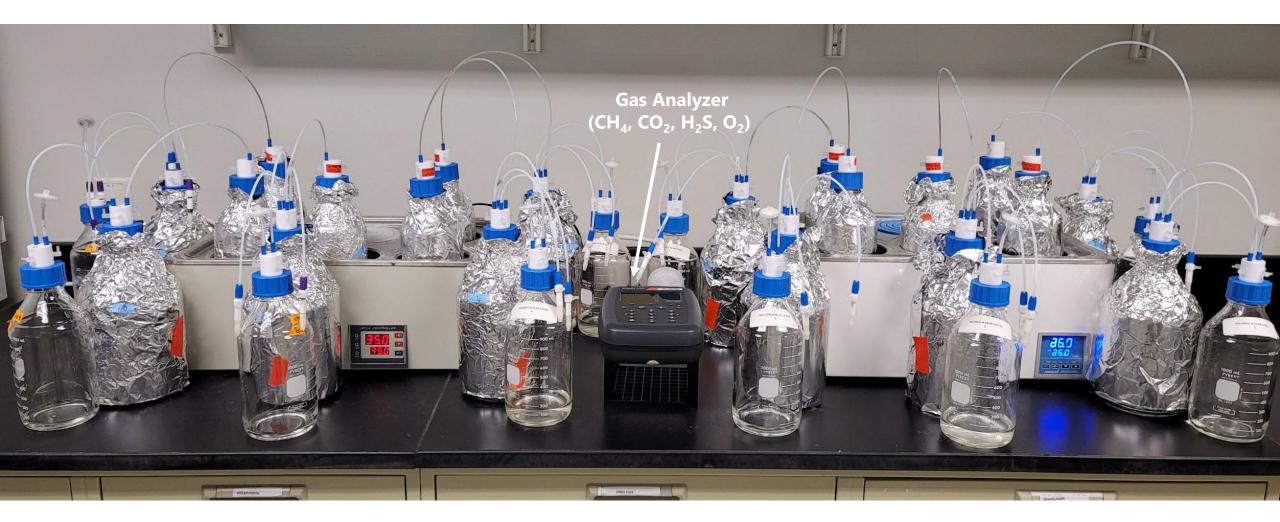


At what depths in sediment column are conditions favorable for biogas bubble formation?

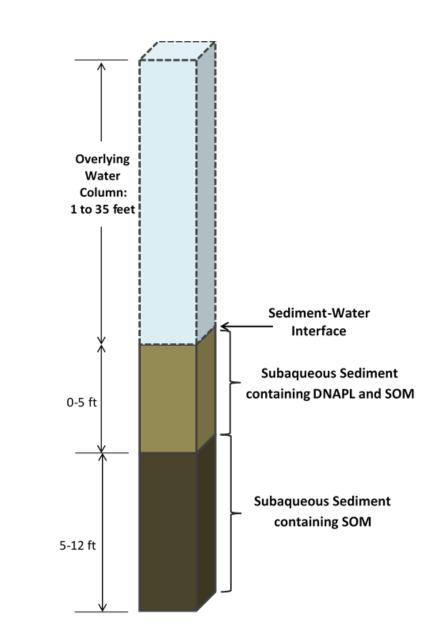
How long will conditions remain favorable?


Estimating Ebullition Duration


- Process-based biogeochemical sediment-water model supported by site-specific sediment geochemistry and biogas generation data
- Predict ebullition potential over time
 - Balance between depth-dependent rates of methane generation and oxidation
 - Is the vertically integrated biogas production rate net positive?
 - Yes: ebullition is possible
 - No: ebullition is not possible


\mathcal{O} APPROACH + METHODS

Measuring Biogas Production Rates


\mathcal{O} APPROACH + METHODS

Laboratory incubation setup to quantify site-specific biogas production rates and composition

Modeling Approach

- 1D biogeochemical reactive transport model of sediment and overlying water column (PHREEQC)
- Transport includes advection-dispersion-diffusion of dissolved components
 - Time-variable upward or downward advection to simulate groundwater-surface water interactions
- Spatially distributed multicomponent DNAPL (BTEX, PAHs, etc.)
 - Kinetic dissolution of DNAPL components
- Sorption of soluble DNAPL components on sediment organic matter (SOM)

Modeling Approach (cont.)

- Kinetic biodegradation of dissolved NAPL components and SOM
 - Mineralization of organic compounds to inorganic carbon $(CO_2 \text{ and/or methane})$
 - Sequential electron-acceptor utilization and inhibition terms
- Secondary redox reactions
 - Methane oxidation by O₂, NO₃, Mn(IV), Fe(III), and SO₄
- Gas bubble forms when concentration dissolved gas concentration exceeds solubility in porewater
 - Function of temperature, salinity and hydrostatic pressure
 - Gas bubble composition includes CH₄, CO₂, N₂, and other minor gases

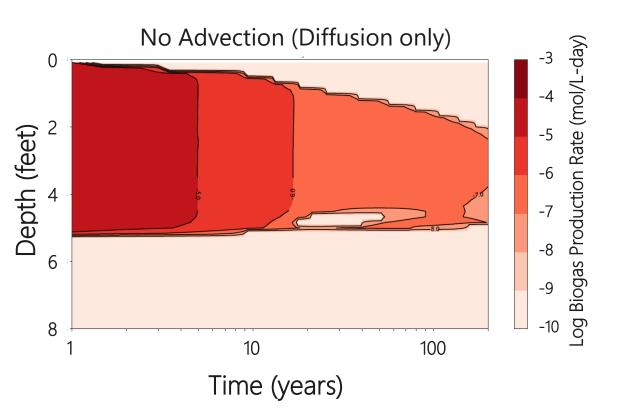
 $R_{i} = \left(K_{ox} * \left(\frac{\left[C_{org}\right]}{\left[C_{org}\right] + \left[K_{m,org}\right]}\right) * \left(\frac{\left[S_{ox}\right]}{\left[S_{ox}\right] + \left[K_{m,ox}\right]}\right)\right)$ $+\left(K_{denit} * \left(\frac{[C_{org}]}{[C_{org}] + [K_{m,org}]}\right) * \left(\frac{[S_{nit}]}{[S_{nit}] + [K_{m,nit}]}\right) * \left(\frac{[I_{ox}]}{[I_{ox}] + [S_{ox}]}\right)\right)$ $+ \left(K_{iron} * \left(\frac{[C_{org}]}{[C_{org}] + [K_{morg}]}\right) * \left(\frac{[S_{iron}]}{[S_{iron}] + [K_{m,iron}]}\right) * \left(\frac{[I_{ox}]}{[I_{ox}] + [S_{ox}]}\right)$ $*\left(\frac{[I_{nit}]}{[I_{nit}] + [S_{nit}]}\right)$ $+\left(K_{sulf}*\left(\frac{\left[C_{org}\right]}{\left[C_{org}\right]+\left[K_{m,org}\right]}\right)*\left(\frac{\left[S_{sulf}\right]}{\left[S_{sulf}\right]+\left[K_{m,sulf}\right]}\right)*\left(\frac{\left[I_{ox}\right]}{\left[I_{ox}\right]+\left[S_{ox}\right]}\right)$ $*\left(\frac{[I_{nit}]}{[I_{nit}] + [S_{nit}]}\right) * \left(\frac{[I_{iron}]}{[I_{iron}] + [S_{iron}]}\right)\right)$ $+\left(K_{ferm} * \left(\frac{\left[C_{org}\right]}{\left[C_{org}\right] + \left[K_{m,org}\right]}\right) * \left(\frac{\left[I_{ox}\right]}{\left[I_{ox}\right] + \left[S_{ox}\right]}\right) * \left(\frac{\left[I_{nit}\right]}{\left[I_{nit}\right] + \left[S_{nit}\right]}\right)$ $*\left(\frac{[I_{iron}]}{[I_{iron}] + [S_{iron}]}\right) * \left(\frac{[I_{sulf}]}{[I_{sulf}] + [S_{sulf}]}\right)$

Example Application

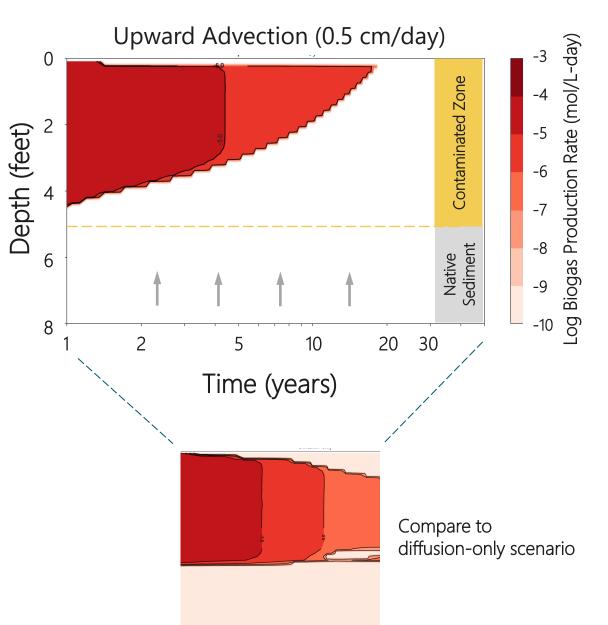
- Former MGP site, upper 5 feet of sediment contaminated by tar
- Simulate effect of groundwatersurface water interaction regimes on vertical distribution and evolution of biogas production zone over time
 - No advection (diffusion only)
 - Upwelling
 - Downwelling

Overlying Water Column: 1 to 35 feet	
×	
0-5 ft	
5-12 ft	

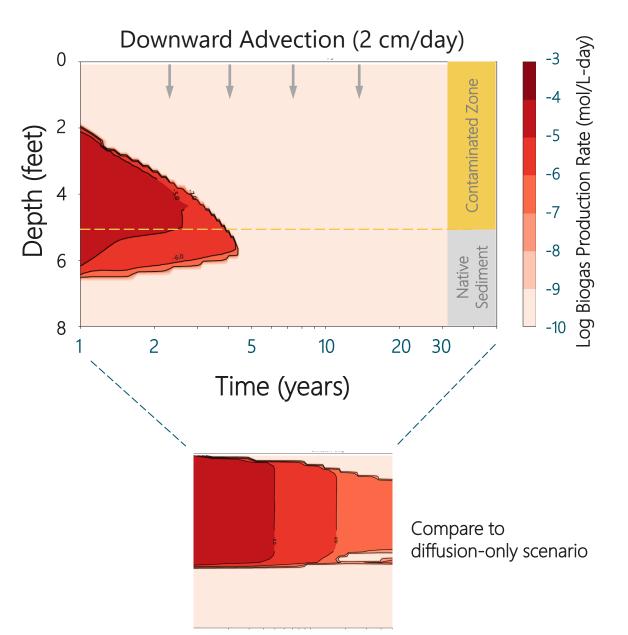
River Water Chemistry				
Parameter	Value	Units		
Temperature	11	°C		
рН	7.5			
Dissolved Oxygen	16			
Dissolved Inorganic Carbon	12.5			
Calcium	6.0			
Chloride	7.2			
Iron(III)	0.084	mg/L		
Nitrate, as N	0.49			
Sodium	4.4			
Sulfate, as SO ₄ ²⁻	3.0			
		Average Concentration (mol/L _w)		
Sediment Chemistry		0-5 ft 5-12 ft		


		Average Concentration (mol/L _w)	
Sediment Chemistry		0-5 ft	5-12 ft
Volatile Organic Compounds (VOCs)	Benzene	3.33E-05	0
	Toluene	8.28E-06	0
	Ethylbenzene	1.05E-04	0
	m,p-Xylene	5.62E-05	0
	o-Xylene	3.30E-05	0
Polycyclic Aromatic Hydrocarbons (PAHs)	Naphthalene	3.25E-03	0
	1-Methylnaphthalene	6.05E-04	0
	2-Methylnaphthalene	9.76E-04	0
	Acenaphthene	1.09E-03	0
	Phenanthrene	2.77E-03	0
	Fluoranthene	1.19E-03	0
	Pyrene	1.47E-03	0
	Recalcitrant (inert) NAPL	2.84E-03	0
Sediment Organi	c Matter (SOM)	1.0	1.0

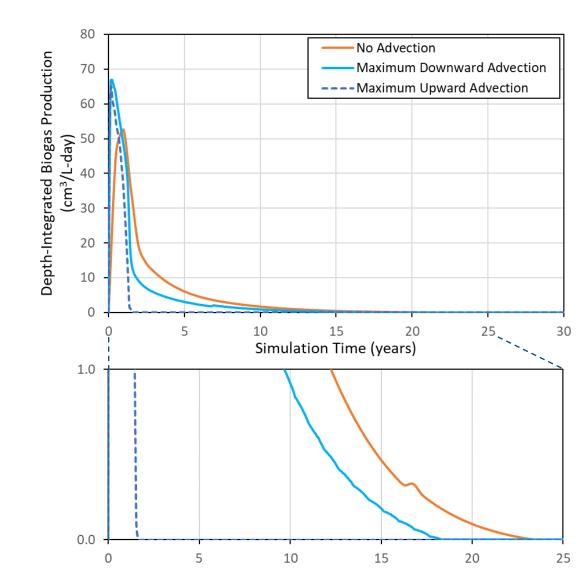
Model Results: Evolution of Biogas Production Rates


Diffusion Only Scenario

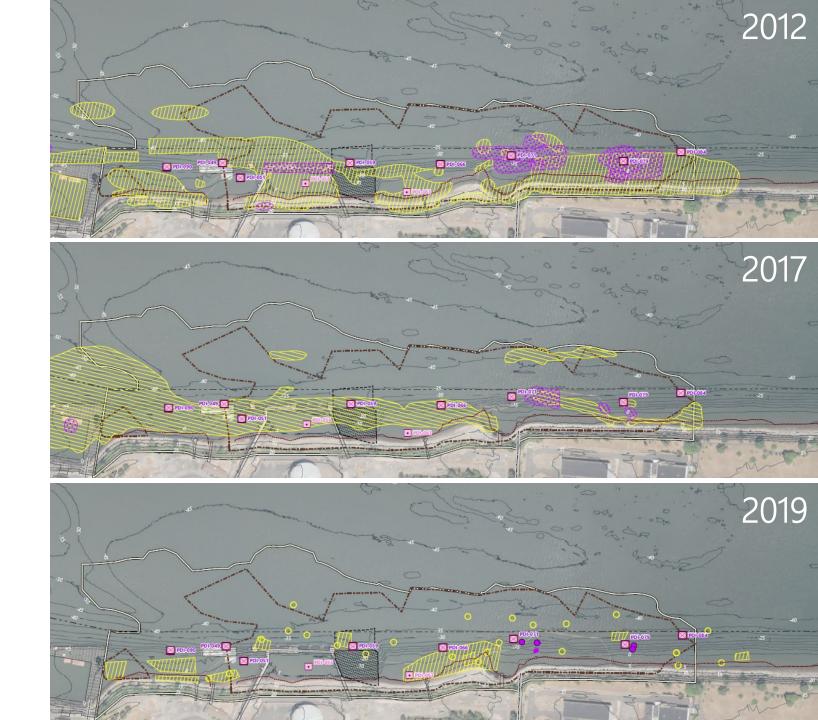
- 200-year simulation
- Intense biogas production across contaminated sediment zone gradually decreases as more labile DNAPL constituents are depleted via dissolution and biodegradation
- Gradual retreat of the upper limit of biogas production due to diffusion of dissolved oxygen from overlying surface water


Upwelling Scenario

- 50-year simulation
- Intense biogas production across contaminated zone
- Biogas production zone shrinks from the bottom up as soluble DNAPL constituents are transported out of the sediment by upwelling porewater
- Biogas production predicted to cease after approximately 20 years as the biodegradable carbon pool is depleted


Downwelling Scenario

- 50-year simulation
- Intense biogas production limited to the deeper section of the contaminated interval
- Aerobic conditions in the upper section due to surface water infiltration
- Biogas production zone shrinks over time from the top down
- Biogas production predicted to cease within approximately 5 years


Net Biogas Production and Duration of Ebullition

- Net biogas production in sediment can be used to predict ebullition potential over time
 - Vertical integration of methane generation and oxidation rates over sediment column (calculated by model)
 - Net positive values indicate ebullition is possible
 - Ebullition predicted to cease when vertically integrated biogas production is less than or equal to 0
- Model results show that duration of ebullition is sensitive to direction of advective porewater flux

Reality Check

- Upland source control (hydraulic capture and containment) installed in 2012
- Induced surface water downwelling into sediment
- Ebullition (yellow) and sheening (violet) areal extents diminished significantly over a period of 7 years

Summary

- Ebullition-facilitated contaminant transport is an issue of concern for remediation at many NAPL-contaminated sediment sites
- If sources of biodegradable organics are controlled, ebullition process is expected to be of finite duration
- Site-specific sediment geochemistry, biogas testing, and biogeochemical reactive transport modeling can be used to estimate the duration of ebullition-facilitated contaminant transport and inform remedial design (e.g., organoclay dosing in engineered cap)

Dimitri Vlassopoulos, PhD

Principal Anchor QEA dvlassopoulos@anchorqea.com

REFERENCES

Whiticar, M.J., 2020. The Biogeochemical Methane Cycle. In: Wilkes, H. (eds) *Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate.* Springer, <u>https://doi.org/10.1007/978-3-319-</u> 54529-5 5-1.

Viana, P.Z., and K.J. Rockne, 2021. Fundamentals of Ebullition Facilitated NAPL and Contaminant Transport. *Appl. NAPL Sci. Rev. 9(6)*.