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Context for mass 
flux assessment



C H A L L E N G E

What sorts of economical 
innovations can improve chemical 
mass flux measurements in 
sediment?



• J = C × q
– where: J = chemical mass flux per unit area per unit time, C = concentration 

in fluid phase, and q = seepage rate (aka Darcy flux or specific discharge)

• q = K × i

• K = hydraulic conductivity

• i = hydraulic gradient

• Two fluid phases: dissolved phase (porewater) and NAPL

Chemical Mass Flux

Source: Kueper et al. (2003)
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Use 
in the field

Adapt to
site-specific 
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Develop 
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Economical 
Innovations



C H A L L E N G E

Dissolved-Phase Mass Flux—
Porewater Seepage and 
Concentrations



• Hyporheic flow, heterogenous sediment
– Multiple data collection locations

– Stratigraphy, geomorphology, and known areas with chemicals of 
interest

Porewater Seepage—Spatial Variability 

Source: Broecker et al. (2021)
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• Tides, storms, and seasons
– Multiple measurement “snapshots” or long periods (typically months)

Porewater Seepage—Temporal Variability

4-month data collection period



• Seepage meters
– Fouling by biota or gas

– Possible instability in soft sediment

– Difficult to install in hard sediment

– Hyporheic flow complexities

– Impractical to deploy for long periods

• Piezometers
– Destruction by flood, ice, and debris

– Colocated vertical permeability 
measurement required—standard methods 
have significant costs

Potential Pitfalls

Source (top photograph): Best et al. (2019)



• Vertical hydraulic gradient 
(VHG) device with transducers
– Dr. Donald Rosenberry, USGS

• Subaqueous piezometers with 
transducers

• Big picture: avoid hyporheic 
zone and collect continuous 
data

Hydraulic Gradient

Source (VHG graphic): Best et al. (2019)
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• Measure vertical hydraulic conductivity (Kv) of 
whole sediment core by gravity drainage 

• Avoid: sample cutting, packing, shipping to lab, 
transferring to lab test cell, over-consolidation, 
and use of multiple small samples

Hydraulic Conductivity

Source (figures): Gefell et al. (2019)
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Intertidal Zone Seepage 

Calculate Kv and combine with full gradient 
dataset for comprehensive seepage evaluation

Low-tide mud flat

E C O N O M I C A L  I N N O V A T I O N



• Vertical gradient from piezometer pair or VHG rod

Intertidal Zone Gradient
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• Spatially variable (3D)
– Multiple sampling locations

– Target anticipated future dredge depth 
(if known)

• Common data collection methods
– Calculation: sediment–porewater partitioning

– Pumped sampling: push point, drill casing

– Passive sampling: solid-phase microextraction 
(SPME), polyethylene samplers

Porewater Concentrations

Sources: Zimmerman et al. (2013) and Burgess (2013)

SPME

Push-point sampler



• Hard, gravelly, cobbly sediment—
difficult to deploy porewater 
samplers at depth

• NAPL in sediment complicates 
partitioning calculations

• Big risk: NAPL inclusion in porewater 
samples (pumped or passive)—
unrealistically high concentrations

Potential Pitfalls

Source (bottom photograph): Gefell et al. (2018b)
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Porewater Sampling at Depth in 
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• Porous ceramics

• Water goes through; NAPL doesn’t

• Economical, versatile, and 
effective
– Diffusion-based equilibration

– By direct porewater pumping or after 
sediment centrifuging or gravity 
drainage

Exclude NAPL from 
Porewater Samples

Source: Gefell et al. (2018b)
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Learning Lab
Quantifying Aqueous Concentrations in Direct Contact with 
NAPL-Containing Sediment Using Porous Ceramic Samplers 

Tuesday and Wednesday, 2:40 p.m.



C H A L L E N G E

NAPL Mass Flux—
Quantifying Potential 
Advection Rate



• JN = ρN x qN (NAPL mass flux per unit area 
per unit time)
– where: ρN = NAPL density and qN = NAPL 

seepage rate

• qN = KN × in
– where: KN = NAPL effective hydraulic 

conductivity and in = net gradient

– only applies if NAPL is capable of moving

NAPL Advection 
(Flow Through Pores)

DNAPL on streambed



• Common methods
– Calculate from NAPL accumulation in wells (via NAPL transmissivity)

– Calculate based on: KN = kr,n K νw/νn

• Potential pitfalls
– NAPL rarely seen in wells/piezometers in sediment

– Accumulation rates unknown

– Calculation requires several assumptions

KN Estimation Methods



• Get the full value from NAPL mobility 
laboratory tests
– Use ASTM E3282-21 weight-of-evidence methods

– KN in sediments often extremely low

• In most cases, NAPL has little or no potential 
to migrate via advection in sediments 

KN from Laboratory Tests

Source: Gefell et al. (2018a) 
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(Based on ASTM E3282-21 Methods)

NAPL Hydraulic Conductivity in Sediment at 10 Sites

Source: Gefell and Gauley (2022)



S O L U T I O N  /  L E S S O N S  

• Chemical mass flux is crucial for successful 
sediment remediation

• Beware of pitfalls in data collection

• Economical innovations can improve 
versatility in the field, data quality, mass flux 
quantification, and remedial outcomes



Michael 
Gefell, PG
Principal Scientist
Anchor QEA
mgefell@anchorqea.com
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