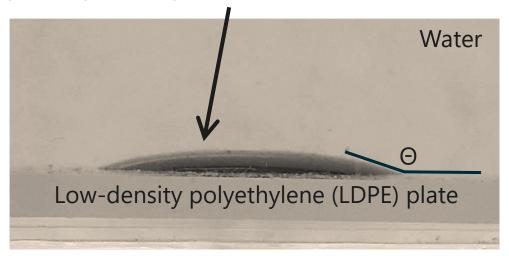

Quantifying Aqueous Concentrations in Direct Contact with NAPL-Containing Sediment Using Porous Ceramic Samplers

Learning Lab: Tuesday and Wednesday, 2:40 to 3:05 p.m. Presented by: Michael Gefell, PG; Dimitri Vlassopoulos, PhD; and Deirdre Reidy, Anchor QEA

Importance of Accurate Porewater Samples

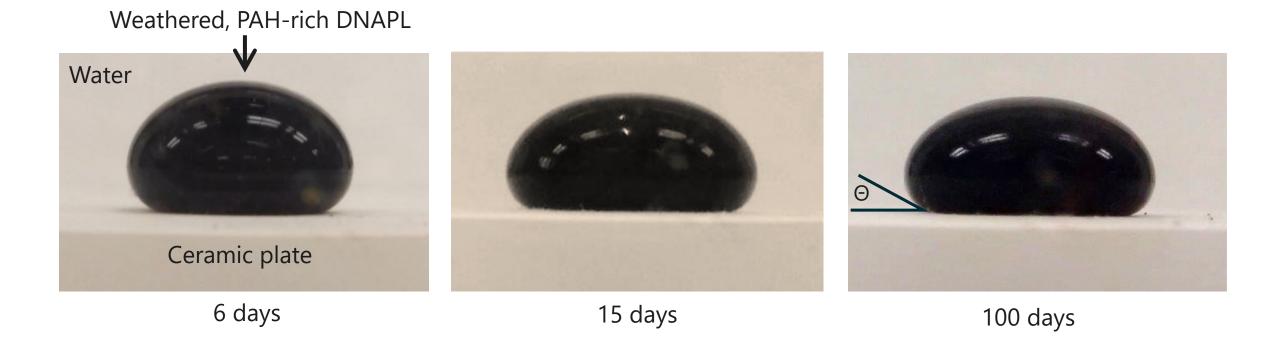
Nonaqueous phase liquids (NAPLs) can exaggerate "aqueous" concentrations


NAPLs can enter push-point samplers and wells and coat/foul hydrophobic passive samplers

NAPL coating on a solid-phase microextraction fiber

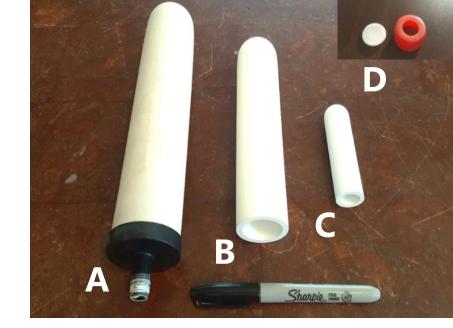
Wettability Test—DNAPL on LDPE Underwater

Weathered, polycyclic aromatic hydrocarbon (PAH)-rich dense nonaqueous phase liquid (DNAPL)



1 day; contact angle (Θ) = 162°

NAPL is wetting phase



Wettability Test—Same DNAPL on Porous Ceramic Plate Underwater

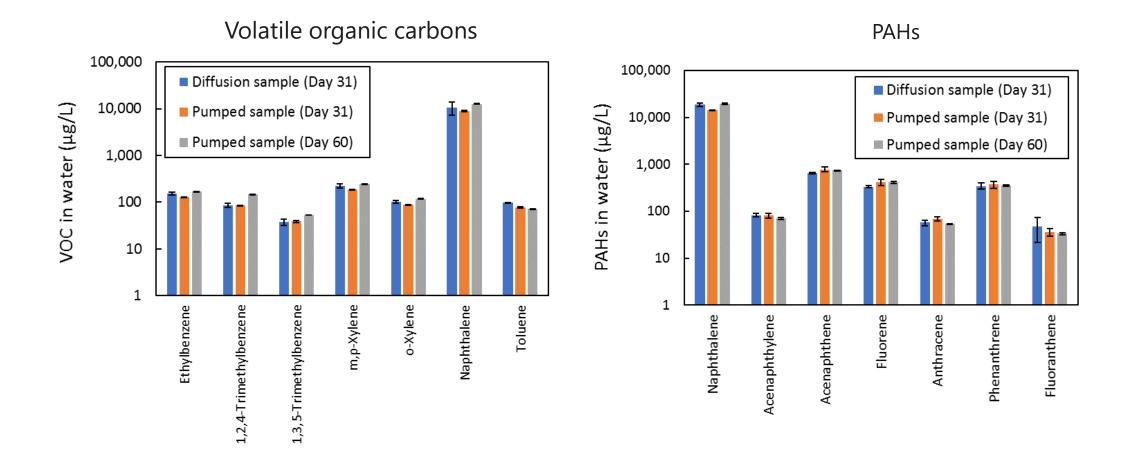
Contact angle $\Theta = 24^{\circ}$ NAPL is non-wetting phase

Porous Ceramics are NAPL Barriers

ID	Shape	Pore Size (µm)	K (cm/s)	Porosity	Length (cm)	Outer Diameter (cm)	Approximate Cost (U.S. dollars)
A*	Tube	11.2	8 × 10 ⁻⁵	0.22	24	4.9	\$25
В	Tube	2.5	9 × 10 ⁻⁶	0.45	17	4.0	\$110
С	Tube	2.5	9 × 10 ⁻⁶	0.45	8.9	2.2	\$50
D	Disk	2.5	9 × 10 ⁻⁶	0.45	NA	2.2	\$50

Notes:

*: Physical parameters estimated based on laboratory testing by Anchor QEA. All others provided by manufacturer. K: hydraulic conductivity


Porewater Sampling Tests with Diffusive Equilibration and Pumping (With NAPL)

- Aquarium with well-graded sand, water, and 10% creosote NAPL saturation
- Duplicate samples
 - Diffusion-based water samples at 10, 20, and 31 days
 - Pumped-water samples also collected from ceramic tubes at 31 and 60 days

Porewater Sampling Tests with Diffusive Equilibration and Pumping (with NAPL)

Experience at 11 Sites Across United States and Canada

Groundwater

Technology Spotlight/

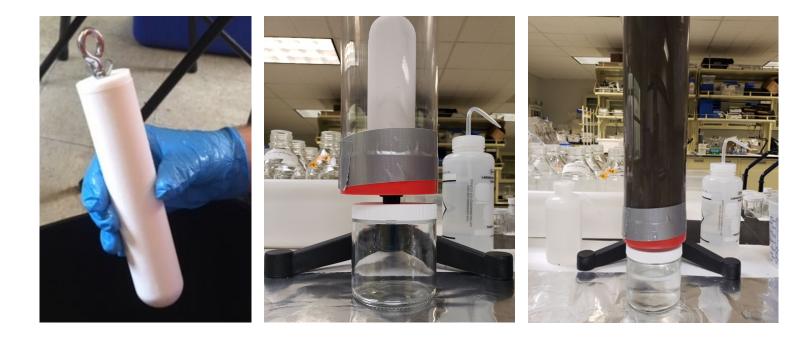
Aqueous–Phase Sampling with NAPL Exclusion Using Ceramic Porous Cups

by Michael J. Gefell¹, Masa Kanematsu², Dimitri Vlassopoulos², and David S. Lipson³

Source: Gefell et al. (2018)

Pumping from Push-Point, Well, Piezometer, or Drill Casing

Intake mode (after sampling groundwater below light nonaqueous phase liquid in well) Discharge mode

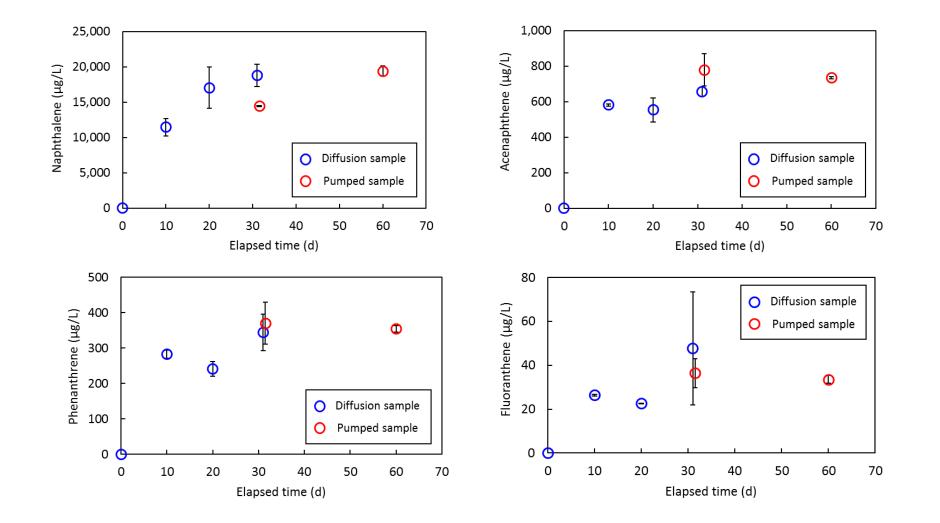

After Porewater Sampling at Coal Tar Site (Discharge Mode)

NAPL and sheen were trapped inside Ceramic tube broken after use for illustrative purposes

Outside clean; no NAPL/sheen in porewater sample

Other Sampling Methods

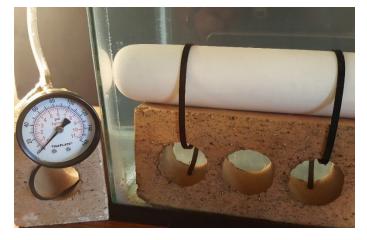
- In situ, diffusion-based equilibration (≥30 days)
- Ex situ porewater: gravity drainage from sediment through filter
- Ex situ porewater: centrifuge from sediment, then pump through filter



\$ LESSONS LEARNED

- Pumped discharge mode
 - Clogging/breaking due to excess turbidity or trapped air
- In situ diffusion-based equilibration
 - Detection levels can be affected by limited sample volume
 - Tubes may be washed away during long deployment (several months) in fast-moving river

Porewater Sampling Test Results



Entry Pressure Test of Ceramics Using Air in Water-Filled Tank

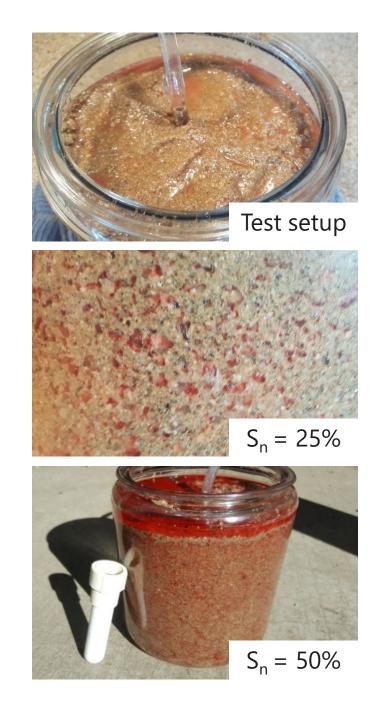
- 2.5-micron pore diameter (reported by manufacturer)
- Measured air entry pressure: 16 psi

- Measured air entry pressure: 4 psi
- Pore diameter: 11 microns (calculated)

Depth Below Top of DNAPL Pool Required for Coal Tar/Creosote to Enter Ceramic Pores Without Water Pumping

 $Z_n = (2\sigma\cos\phi) / [r g (\rho_n - \rho_w)]$

where:


$$\begin{split} &Z_n = \text{critical DNAPL height above ceramic sampler (cm)} \\ &\sigma = \text{NAPL-water interfacial tension (20 dynes/cm = 20 g/s^2)} \\ &\phi = \text{contact angle (24°)} \\ &r = \text{pore radius (1.25 to 5.6 microns = 0.000125 to 0.00056 cm)} \\ &g = \text{gravitational constant (980 cm/s^2)} \\ &\rho_n = \text{non-wetting phase (NAPL) density (1.07 g/cm^3)} \\ &\rho_w = \text{wetting phase (water) density (1.0 g/cm^3)} \end{split}$$

Z_n = 10 to 40 meters

Source: Cohen and Mercer (1993)

Water-Pumping NAPL Exclusion Tests

- Well-graded, fine to course sand
- 25% to 50% NAPL saturation (S_n), red paraffin oil (46 dynes/cm, 3 centistokes)
- Peristaltic pump, water recirculated, monitored vacuum (drawdown), pumping rate, and effluent for visible NAPL/sheen
- Results: converted for typical coal tar interfacial tension (20 dynes/cm)
 - S_n = 0.25: Up to 12 feet drawdown and 25 mL/min water flow with <u>no sheen</u> or NAPL in effluent—potentially useful
 - S_n = 0.50: Sheen in effluent with 5 feet water drawdown and only 1.5 mL/min water flow—impractical

Michael Gefell, PG

Principal Scientist Anchor QEA mgefell@anchorqea.com

Dimitri Vlassopoulos, PhD

Principal Anchor QEA LLC dvlassopoulos@anchorqea.com

Deirdre Reidy Manager Anchor QEA dreidy@anchorqea.com

REFERENCES

Burgess, R.M., 2013. *Passive Sampling for Measuring Freely Dissolved Contaminants in Sediments: Concepts and Principles*. Training slides from 23rd Annual National Association of Residential Property Manager Training. (Slide 2)

Cohen, R.M., and J.W. Mercer, 1993. *DNAPL Site Evaluation*. Boca Raton, Florida: C.K. Smoley. (Slide 19)

Gefell, M., M. Kanematsu, D. Vlassopoulos, and D. Lipson, 2018. "Aqueous-Phase Sampling with NAPL Exclusion Using Ceramic Porous Cups," *Groundwater* 56(6): 847–851. (Slide 10)